

INSTRUMENT ARCHITECTURE:

MARSCHALS MILLIMETRE WAVE LIMB SOUNDER

Brian Moyna Millimetre Technology Group, RAL Space Rutherford Appleton Laboratory, UK

Outline

- Definition
- History
- Original instrument
- SCOUT-03
- UAMS
- PREMIER-Ex, ESSenCe
- Future: NSTP, SHIRM, Spectrometer, Pointing, Future campaigns

RAL Space

MARSCHALS

- Millimetre-wave Airborne Receiver for Spectroscopic CHaracterisation of Atmospheric Limb-Sounding
 - Conceived as an airborne simulator of the MASTER¹ instrument, onboard the proposed ACECHEM² Earth Explorer Core mission. Funded by ESA

RAL Space

 Now deployed as a demonstrator for STEAMR onboard PREMIER, an Earth Explorer 7 candidate mission

- ¹ Millimetre- wave Acquisitions for Stratosphere Troposphere Exchange Research
- ² Atmospheric Composition Explorer for CHEMistry and climate interactions CEOI PM Workshop Nov '12

Key Performance Specifications

- Instrument Type Total Power Single Sideband Radiometer
- RF target bands
 - Band B 294 305.5 GHz (O_3)
 - Band C 316.5 325.5 GHz (H_2O)
 - Band D 342.2 348.8 GHz (CO)
- Instantaneous bandwidth 12 GHz @ 200 MHz resolution
- NET (250ms)
 - Target 1K
- Sideband Rejection > 30dB
- Beam Width
 0.34° HPBW (2 km at 10 km tangent height)
- Beam Pointing <<0.0025 deg. rms knowledge during scan, bias excepted
- Scan range Tangent heights from –2km to platform altitude (21km on aircraft) in 1 km steps with +20° "space view"

PREMIER – Limb Imaging of UTLS

The global structure of the troposphere and lower stratosphere.

(P. Preusse)

Limb vs Nadir Sounding

Comparison of limb transparency in PREMIER 12µm infrared (left) and 1mm mm-wave (right) atmospheric windows.

Annual-mean probabilities of transmittance >20% calculated from ECMWF analyses.

White dashed line indicates tropopause. (R. Siddans, RAL)

RAL Space

Instrument Configuration - aircraft

Instrument Configuration - aircraft (& balloon)

MARSCHALS Receiver Technology (Original layout c 2005)

FSS Sideband Filter

Subharmonic Mixer

Frequency Doubler

Beam Path within QO Module

20.96 20.98 21.00 21.02 Time / bra

CEOI PM Workshop Nov '12

Upgrades identified post-Darwin

Analysis of spectra from Scout-O3 flights identified several high priority improvements:

Performance

- Improve receiver noise temperature reduce NEDT
- Improve antenna pointing accuracy during dynamic flight
- Improve thermal stability
- Improve Cold load reduce standing waves in spectra

Characterisation

- Finer resolution antenna pattern knowledge
- Finer resolution channel shape knowledge

Upgrades identified post-Darwin

Analysis of spectra from Scout-O3 flights identified several high priority improvements:

Performance

- Improve receiver noise temperature reduce NEDT
- Improve antenna pointing accuracy during dynamic flight
- Improve thermal stability
- Improve Cold load reduce standing waves in spectra

Characterisation

- Finer resolution antenna pattern knowledge
- Finer resolution channel shape knowledge
 - **UAMS** ESA funded programme to upgrade MARSCHALS

QON Pre-Upgrade

QON following Upgrade

Component upgrades

Flatter IF Response in new Band B Receiver – improved dynamic range

New blackbody target for Cold Calibration Load

- Higher return loss
- Lower standing waves
- Cleaner calibrated spectra

CEOI PM Workshop Nov '12

Much lower insertion Loss of Band C & D Sideband Filters – better NEDT (Queen's University, Belfast)

Component upgrades

Flatter IF Response in new Band B Receiver – improved dynamic range

New blackbody target for Cold Calibration Load

- Higher return loss
- Lower standing waves
- Cleaner calibrated spectra

Much lower insertion Loss of Band C & D Sideband Filters – better NEDT (Queen's University, Belfast)

CEOI PM Workshop Nov '12 Mu

Much improved sensitivity in all bands

Reduced Standing Waves (PREMIER Ex 2010)

RAL Space

Improvements in Measurement Performance after UAMS Upgrade

- Lower receiver noise temperatures leads to reduced $\Delta NEBT$, and therefore lower measurement noise.
- Improved blackbody termination of the cold calibration target mitigates calibration errors and standing wave pattern in cold sky spectra.
- More frequent and more reliable pointing bias corrections mean less observation time is lost after aircraft turns (or other pointing problems).
- Upgraded computer stacks, power supplies and thermal stability improve operational reliability.

Future upgrades

UK National funding secured for 2 year programme of major upgrades to MARSCHALS:

RAL Space

- Context : UK support for STEAMR
 - Replacement of Band D receiver with one based on sideband separating mixer (SHIRM) technology
 - (being developed with CEOI support)
 - Addition of high resolution spectrometer digital autocorrelator or Fourier Transform type (TBC)
 - UK spectrometer development being supported by CEOI
 - Additional flights (further collaborative proposals to e.g. FP7, ESA are in preparation)

RAL Space

STEAMR Technology at RAL

- Sideband-separating mixers for STEAMR
 - \rightarrow Incorporates 2x sub-harmonic mixers
 - → Removes need for optical sideband filtering
 - → RAL/Astrium development with CEOI funding

Planned Receiver Configuration

CEOI PM Workshop Nov '12

Planned Receiver Configuration

CEOI PM Workshop Nov '12

Performance Summary

Instrument Type	Total Power Single Sideband Radiometer
RF target bands	Band B 294 – 305.5 GHz Band C 316.5 – 325.5 GHz
la stantan saus han duridth	Band D 342.2 – 348.8 GHz
Instantaneous bandwidth	12 GHZ
Spectral Resolution	200 MHz (with provision for addition of high resolution spectrometer with up to12 GHz bandwidth)
NEΔT (4 scans)	2K (Band B), 1K (Band C,D)
Sideband Rejection	> 30dB
Beam Width	0.34° HPBW (2 km at 10 km tangent height)
Beam Pointing	<<0.0025 deg. rms pointing knowledge during scan, bias excepted
Scan range	Tangent heights from -2 km to platform altitude (21km on aircraft) in 1 km steps with $+20^{\circ}$ "space view"
Mass	330kg
Dimensions	1.55 x 0.76 x 0.56m

- MARSCHALS into its 2nd decade
- Continuous upgrades keep it relevant as an airborne demonstrator of planned spaceborne mm-wave limb sounders
- Next upgrades will enable closest simulation yet of PREMIER, operating alongside GLORIA-AB IR Limb imaging spectrometer

- MARSCHALS into its 2nd decade
- Continuous upgrades keep it relevant as an airborne demonstrator of planned spaceborne mm-wave limb sounders
- Next upgrades will enable closest simulation yet of PREMIER, operating alongside GLORIA-AB IR Limb imaging spectrometer – time & place TBD!